Test All Filters

Remove unwanted classification from the workshop page.
123
9966757575
Test

Statistical Analysis of Multi-day Solar Irradiance using a Threshold Time Series model

Abstract

The analysis of solar irradiance has important applications in predicting solar energy production from solar power plants. Although the sun provides every day more energy than we need, the variability caused by environmental conditions affects electricity production. Most of the existing statistical models to forecast solar irradiance are linear and highly depend on normality assumptions. However, solar irradiance shows strong non-linearity and is only measured during the day time. Thus, we propose a new multi-day threshold autoregressive (TAR) model to quantify the variability of the daily irradiance time series. When we apply our model to study the statistical properties of observed irradiance data in the Guadeloupe island group, a French overseas region located in the southern Caribbean Sea, we are able to characterize two states of the irradiance series. These states represent the clear-sky and non-clear-sky regimes. Using our model we are able to simulate irradiance series that behave similar to the real data in mean and variability, and more accurate forecasts compared to its competitors. 

Brief Biography

Dr. Carolina Euan is a postdoctoral fellow at the Environmental Statistics Research Group at King Abdullah University of Science and Technology (KAUST). Carolina Euan received her Ph.D. degree in Probability and Statistics from the Center for Research in Mathematics (CIMAT), Mexico, in 2016.  She joined KAUST as a Postdoctoral Research Fellow in October 2016. Her research interests are the analysis of High dimensional Time Series, Spatio-Temporal Models, Non-Stationary Processes and Complex Data Visualization.

Location Building 9, Lecture Hall 2, Room 2325

An introduction to the infinity–Laplacian - Part 1

Abstract

The mini-course is an introduction to the analysis of infinity−harmonic functions, a subject that grew mature in recent years in the field of nonlinear partial differential equations. The material covered ranges from the Lipschitz extension problem to questions of existence, uniqueness and regularity for infinity−harmonic functions. A rigorous and detailed analysis of the equivalence between being absolutely minimising Lipschitz, enjoying comparison with cones and solving the infinity–Laplace equation in the viscosity sense is the backbone of the course. A few regularity results (including the Harnack inequality and the local Lipschitz continuity) and an easy proof, due to Armstrong and Smart, of the celebrated uniqueness theorem of Jensen complete the course.

Brief Biography

José Miguel Urbano is a Professor of Mathematics at the University of Coimbra. He holds a PhD from the University of Lisbon and did a postdoc at Northwestern University in Chicago. He is the author of the book The Method of Intrinsic. Scaling and of over 50 scientific papers in the area of Nonlinear Partial Differential Equations. He has supervised four PhD students and ten postdoctoral fellows and is an associate editor of the journal Nonlinear Analysis. He was a member of the Scientific Council for the Exact Sciences and Engineering of the Portuguese Science Foundation (FCT) and has served as evaluator of grants and research projects for the EU (Marie-Curie Fellowships), ERC (Starting Grants), the Academy of Finland, the Latvian Council of Science and FCT. He has taught short courses at IMPA (Rio de Janeiro, Brazil), the University of Florence (Italy), Aalto University (Finland), the Federal University of Ceará (Fortaleza, Brazil), KAUST (Saudi Arabia) and Seoul National University (South Korea). 

123DR1256
Building 1, Level 3, Room 3119

Functional data depth and its application in the visualization of spatio-temporal covariance structures

Abstract

Functional data analysis is a very active research area due to the overwhelming existence of functional data. In the first part of this talk, I will introduce how functional data depth is used to carry out exploratory data analysis and explain recently-developed depth techniques. In the second part, I will discuss spatio-temporal statistical modeling. It is challenging to build realistic space-time models and assess the validity of the model, especially when datasets are large. I will present a set of visualization tools we developed using functional data analysis techniques for visualizing covariance structures of univariate and multivariate spatio-temporal processes. I will illustrate the performance of the proposed methods in the exploratory data analysis of spatio-temporal data.

Brief Biography

Huang Huang is a research scientist in the Spatio-Temporal Statistics & Data Science group at KAUST. Before working at KAUST, he did research on statistical computing for climate applications as a postdoc at the National Center for Atmospheric Research (NCAR), the Statistical and Applied Mathematical Sciences Institute (SAMSI), and Duke University. His research interest includes spatio-temporal statistics, functional data analysis, Bayesian modeling, machine learning, and high-performance computing for large datasets.

Building 9, Level 2, Room 2322

Marine Science (MarS)

Id diam vel quam elementum pulvinar etiam. Arcu risus quis varius quam quisque id diam. Eu feugiat pretium nibh ipsum consequat. Neque volutpat ac tincidunt vitae semper quis lectus nulla at. Diam phasellus vestibulum lorem sed risus ultricies tristique. Vitae proin sagittis nisl rhoncus mattis rhoncus. Nibh mauris cursus mattis molestie a iaculis at erat. Facilisis gravida neque convallis a cras semper. In nulla posuere sollicitudin aliquam ultrices. Ut eu sem integer vitae justo. Faucibus scelerisque eleifend donec pretium vulputate sapien nec sagittis. Faucibus vitae aliquet nec ullamcorper sit. Quis eleifend quam adipiscing vitae proin sagittis nisl. Erat imperdiet sed euismod nisi porta lorem. Elementum pulvinar etiam non quam lacus. Faucibus a pellentesque sit amet. Mattis rhoncus urna neque viverra justo nec ultrices dui sapien. Magna eget est lorem ipsum dolor sit. Duis convallis convallis tellus id interdum. Sed ullamcorper morbi tincidunt ornare massa eget egestas.

Environmental Science and Engineering (EnSE)

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ipsum dolor sit amet consectetur adipiscing elit duis tristique sollicitudin. Ornare lectus sit amet est placerat in. Malesuada fames ac turpis egestas sed. Sit amet massa vitae tortor condimentum lacinia quis vel. Volutpat lacus laoreet non curabitur. Euismod elementum nisi quis eleifend. Eget arcu dictum varius duis at consectetur lorem. Eu facilisis sed odio morbi. In iaculis nunc sed augue lacus viverra vitae congue eu. At quis risus sed vulputate odio. Quis blandit turpis cursus in hac.

Commodo quis imperdiet massa tincidunt. Nullam non nisi est sit amet facilisis magna. Orci nulla pellentesque dignissim enim sit amet venenatis urna cursus. Bibendum neque egestas congue quisque egestas. Duis at consectetur lorem donec massa sapien faucibus et. Nunc pulvinar sapien et ligula ullamcorper malesuada. Dignissim convallis aenean et tortor at risus. Orci nulla pellentesque dignissim enim sit amet. Lorem ipsum dolor sit amet consectetur adipiscing. Tincidunt eget nullam non nisi est sit amet facilisis magna. Porttitor eget dolor morbi non arcu risus. Nullam eget felis eget nunc lobortis mattis aliquam faucibus purus. Natoque penatibus et magnis dis. Sit amet risus nullam eget felis eget nunc. Aliquet enim tortor at auctor urna nunc. Et tortor at risus viverra. Non diam phasellus vestibulum lorem. Quam vulputate dignissim suspendisse in est. Mattis vulputate enim nulla aliquet porttitor lacus luctus accumsan tortor. Et sollicitudin ac orci phasellus egestas tellus rutrum tellus pellentesque.

Id diam vel quam elementum pulvinar etiam. Arcu risus quis varius quam quisque id diam. Eu feugiat pretium nibh ipsum consequat. Neque volutpat ac tincidunt vitae semper quis lectus nulla at. Diam phasellus vestibulum lorem sed risus ultricies tristique. Vitae proin sagittis nisl rhoncus mattis rhoncus. Nibh mauris cursus mattis molestie a iaculis at erat. Facilisis gravida neque convallis a cras semper. In nulla posuere sollicitudin aliquam ultrices. Ut eu sem integer vitae justo. Faucibus scelerisque eleifend donec pretium vulputate sapien nec sagittis. Faucibus vitae aliquet nec ullamcorper sit. Quis eleifend quam adipiscing vitae proin sagittis nisl. Erat imperdiet sed euismod nisi porta lorem. Elementum pulvinar etiam non quam lacus. Faucibus a pellentesque sit amet. Mattis rhoncus urna neque viverra justo nec ultrices dui sapien. Magna eget est lorem ipsum dolor sit. Duis convallis convallis tellus id interdum. Sed ullamcorper morbi tincidunt ornare massa eget egestas.

Risus pretium quam vulputate dignissim suspendisse in. Vel fringilla est ullamcorper eget nulla facilisi etiam dignissim. Commodo nulla facilisi nullam vehicula ipsum a. Vitae tempus quam pellentesque nec nam aliquam sem et. Nulla porttitor massa id neque aliquam vestibulum morbi. Tristique senectus et netus et malesuada fames. Magnis dis parturient montes nascetur. Dolor sit amet consectetur adipiscing elit duis tristique sollicitudin. Velit egestas dui id ornare arcu odio ut sem. Faucibus pulvinar elementum integer enim neque volutpat. Auctor neque vitae tempus quam. Urna neque viverra justo nec ultrices. In nisl nisi scelerisque eu ultrices vitae auctor.

At risus viverra adipiscing at. Nunc id cursus metus aliquam eleifend mi in nulla. Sit amet nisl purus in mollis nunc. Tellus molestie nunc non blandit massa enim. Maecenas sed enim ut sem viverra aliquet eget sit amet. Sodales neque sodales ut etiam sit amet. Egestas fringilla phasellus faucibus scelerisque eleifend donec. Nulla facilisi morbi tempus iaculis. Eget aliquet nibh praesent tristique magna sit amet purus gravida. Sit amet mauris commodo quis. Ultrices tincidunt arcu non sodales neque sodales ut etiam sit. Nunc consequat interdum varius sit amet. Eu non diam phasellus vestibulum lorem sed. Turpis egestas sed tempus urna et. Enim facilisis gravida neque convallis a cras semper auctor neque. Lorem ipsum dolor sit amet consectetur adipiscing. Enim blandit volutpat maecenas volutpat blandit aliquam. Urna nec tincidunt praesent semper feugiat nibh sed pulvinar proin. Nisi porta lorem mollis aliquam ut.

ProjectSearchTest

Bioscience (B)

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
123ID123
room 321, b4